Sample Paper 2014: Paper 1

Question 3 (25 marks)

Question 3 (a)

FACTOR THEOREM

If k is a root of a polynomial equation $P(x)=0$, then $(x-k)$ is a factor of $P(x)$ and vice versa. or
For a polynomial $P(x), P(k)=0 \Rightarrow P(k)=(x-k) Q(x)$, where $Q(x)$ is a polynomial of degree one less than $P(x)$.

If $f(-k)=0$, then $-k$ is a root of $f(x)=0$.
$f(x)=x^{3}+\left(1-k^{2}\right) x+k$
$f(-k)=(-k)^{3}+\left(1-k^{2}\right)(-k)+k$
$=-k^{3}-k+k^{3}+k$
$=0$

Question 3 (b)

If $-k$ is a root, $(x+k)$ is a linear factor.
$x^{3}+\left(1-k^{2}\right) x+k=(x+k)\left(x^{2}+a x+1\right) \leftarrow \mathrm{A}$ cubic is a linear multiplied by a quadratic.
$x^{3}+0 x^{2}+\left(1-k^{2}\right) x+k=x^{3}+(a+k) x^{2}+(a k+1) x+k$
$\therefore 0=a+k \Rightarrow a=-k$
$\therefore x^{3}+\left(1-k^{2}\right) x+k=(x+k)\left(x^{2}-k x+1\right)$
$x^{2}-k x+1=0 \leftarrow$ Solve the quadratic equation using the formula.
$a=1, b=-k, c=1$
$x=\frac{-(-k) \pm \sqrt{(-k)^{2}-4(1)(1)}}{2(1)}$
$=\frac{k \pm \sqrt{k^{2}-4}}{2}$

Formulae and Tables Book

Algebra: Roots of the quadratic equation
$a x^{2}+b x+c=0$ [page 20]
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Question 3 (c)
To have exactly one real root, the quadratic equation will give complex roots. This means the expression inside the square root must be negative.
$k^{2}-4<0$
$(k+2)(k-2)<0$
Solve the inequality above. First, solve the equality to locate the roots.
$k^{2}-4=0$
$k^{2}=4$
$k= \pm 2$

ANSWER: $-2<k<2$

