SAMPLE PAPER 2014: PAPER 1

QUESTION 3 (25 MARKS)

Question 3 (a)

FACTOR THEOREM

If k is a root of a polynomial equation P(x) = 0, then (x - k) is a factor of P(x) and vice versa. or

For a polynomial P(x), $P(k) = 0 \Rightarrow P(k) = (x - k)Q(x)$, where Q(x) is a polynomial of degree one less than P(x).

If f(-k) = 0, then -k is a root of f(x) = 0. $f(x) = x^3 + (1 - k^2)x + k$ $f(-k) = (-k)^3 + (1 - k^2)(-k) + k$ $= -k^3 - k + k^3 + k$ = 0

Question 3 (b)

If -k is a root, (x + k) is a linear factor.

 $x^{3} + (1 - k^{2})x + k = (x + k)(x^{2} + ax + 1) \leftarrow A$ cubic is a linear multiplied by a quadratic. $x^{3} + 0x^{2} + (1 - k^{2})x + k = x^{3} + (a + k)x^{2} + (ak + 1)x + k$ $\therefore 0 = a + k \Rightarrow a = -k$ $\therefore x^{3} + (1 - k^{2})x + k = (x + k)(x^{2} - kx + 1)$

 $x^2 - kx + 1 = 0 \leftarrow$ Solve the quadratic equation using the formula.

$$a = 1, b = -k, c = 1$$

$$x = \frac{-(-k) \pm \sqrt{(-k)^2 - 4(1)(1)}}{2(1)}$$

$$= \frac{k \pm \sqrt{k^2 - 4}}{2}$$

FORMULAE AND TABLES BOOK
Algebra: Roots of the quadratic equation

$$ax^2 + bx + c = 0 \text{ [page 20]}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Question 3 (c)

To have exactly one real root, the quadratic equation will give complex roots. This means the expression inside the square root must be negative.

$$k^{2} - 4 < 0$$

(k+2)(k-2) < 0

Solve the inequality above. First, solve the equality to locate the roots.

 $k^{2} - 4 = 0$ $k^{2} = 4$ $k = \pm 2$ (k+2)(k-2) < 0 (k+2)(k-2) < 0 (k+2)(k-2) < 0 (k+2)(k-2) < 0 (2)(-2) < 0 (5)(1) < 0False ANSWER: -2 < k < 2